PALLADIUM CATALYZED SELECTIVE MONOARYLATION OF 2AMINOPYRIMIDINES AND 2-AMINOPYRAZINE WITH 1,2-DIBROMOBENZENE WITHOUT CYCLIZATION

Edgars Abele and Julija Visnevska
Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia, E-mail: abele@osi.lv

Abstract

: A simple one-flask highly selective method for the Pd-catalyzed preparation of sterically hindered 2-(2-bromophenyl)pyrimidines.was elaborated. 2-(2-Bromophenyl)pyrimidines were isolated in $22-64 \%$ yields. Similarly was prepared 2-(2-bromophenyl)aminopyrazine.

Keywords: palladium catalysis, 2-aminopyrimidines, 1,2-dibromobenzene, 2-(2bromophenyl)pyrimidines

INTRODUCTION

Substituted 2-aminopyrimidines are of great interest as intermediates in the synthesis of organic compounds ${ }^{1}$. 2-Arylaminopyrimidines were prepared from 2-aminopyrimidines and bromobenzene or iodobenzene in the presence of CuI ${ }^{\text {II }}$ or t-BuOK ${ }^{\text {III , IV }}$. Second group of methods of synthesis of substituted 2-arylaminopyrimidines is based on the interaction of 2chloropyrimidines with anilines in the presence of palladium ${ }^{\mathrm{I}, \mathrm{V}}$ or cobalt ${ }^{\mathrm{VI}}$ catalysts or treatment of 2-bromopyrimidine with aniline under microwave irradiation. There are only one method for the synthesis of 2-(2-bromophenyl)aminopyrimidine based on the treatment of 2chloropyrimidine with 2-bromoaniline in high temperatures ${ }^{\text {VII }}$. Beside this, cyclization of 2-(2-bromophenyl)aminopyrimidines or pyridines may form coresponding pyrimidobenzimidazoles or pyridobenzimidazoles. For example, 2-(2bromophenyl)aminopyrimidines in the presence of copper catalyst afforded pyrimidobenzimidazoles in almost quantitative yield ${ }^{\text {IIII }}$. We have elaborated novel and selective Pd-catalyzed method for the preparation sterically hindered 2-(2bromophenyl)pyrimidines. Beside this, formation of pyrimidobenzimidazoles does not occur in these cases.

RESULTS AND DISCUSSION

We have elaborated effective catalytic system for the selective preparation of 2-(2bromophenyl)pyrimidnes $\mathbf{1 - 3 a}$ from corresponding 2 -aminopyrimidines $\mathbf{1 - 3}$. Thus, amines $\mathbf{1 -}$ 3 in the system 1,2-dibromobenzene / $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Xantphos $/ \mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{PhMe}$ afforded 2-(2bromophenyl)pyrimidines 1-3a-c in 22-64\% yield (Scheme 1). Similarly was prepared 2-(3-bromopyridin-2-yl)aminopyrimidine (1b) (yield 52%) from amine $\mathbf{1}$ and 2,3dibromopyridine. Reaction of 2-aminopyrazine 4 with 1,2-dibromobenzene leads to 2-(2bromophenyl)aminopyrazine (4a) in 30\% yield..

EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were registered on Varian Mercury BB 400 MHz in CDCl_{3}. Massspectra were recorded on Alliance Waters 2695 instrument with Full scan POS NEG 16 detector. 2-Aminopyrimidines, 1,2-dibromobenzene, palladium acetate, Xantphos and cesium carbonate (all Acros) were used without purification. Melting points were detected on Boetius aparatos equipped with visual detector PHMH 05. HR-MS spectra were performed on Micromass $Q-T O F$ Micro quadrupole-time of fight high resolution mass spectrometer. Leucine enkephalin was used as internal lock mass for accurate mass calculation.
General procedure for the synthesis of 2-(2-bromophenyl)aminopyrimidines 1-3a and 2-(3-Bromopyridin-2-yl)aminopyrimidine (1b). Solid $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.98 \mathrm{~g}, 3 \mathrm{mmol})$ was added to the solution of 2-aminopyrimidine $\mathbf{1 - 3}(1 \mathrm{mmol})$ and 1,2 -dibromobenzene or 2,3 dibromopyridine (1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol})$, Xantphos ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$) in dry toluene (2 ml) in a glass reactor (50 ml) under argon. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ (TLC-control) for 24 h under argon. The solvent was removed under reduced pressure and crude residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: ethyl acetate EtOH (10:3:0.4) as eluent.
2-(2-Bromophenyl)pyrimidine (1a) ${ }^{\text {VII }}$. Yield 62%. M.p. $44-46^{\circ} \mathrm{C}$. GH-MS: $250.0\left(\mathrm{M}^{+}, 11\right)$, 170.1 (100), 85.1 (12). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.70(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-5$ in pyrimidine); $6.91\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.33\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.56(1 \mathrm{H}, \mathrm{d}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.60(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) ; 8.46(2 \mathrm{H},, J=4.8 \mathrm{~Hz}, \mathrm{H}-4$ and H-6 in pyrimidine); 8.51 $\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 113.31 ; 113.35 ; 120.65$; 123.36; 128.02; 132.41; 137.15; 157.99; 159.76. Found, m / z (EI): 249.9968 [M] ${ }^{+} . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN}_{3}$. Calculated, m/z: 249.9980 .
4-Methyl-2-(2-bromophenyl)pyrimidine (2a). Yield 64 \%. M.p. $55-57^{\circ} \mathrm{C} . \mathrm{GC}-\mathrm{MS}, 264.0$ $\left(\mathrm{M}^{+}, 8\right), 184.1$ (100), $92(10) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; 6.65$ $\left(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-5\right.$ in pyrimidine); $6.88\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.32(1 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.55\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.56(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) ; 8.46(1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-6$ in pyrimidine); $8.56\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 24.15$; 112.96; 113.07; 120.44; 123,00; 127.98; 132.34; 137.40; 157.40; 159.55; 168.25. Found, m / z (EI): $264.0151[\mathrm{M}]^{+} . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrN}_{3}$. Calculated, $m / z 264.0136$.
4-Trifluoromethyl-2-(2-bromophenyl)pyrimidine (3a). Yield 22%. M.p. $94-96^{\circ} \mathrm{C}$. GCMS, $318.0\left(\mathrm{M}^{+}, 10\right), 238.1$ (100), 169.1 (9), 119.0 (10). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.96\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.08(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-5$ in pyrimidine $) ; 7.36$ $\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.59\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.82(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) ; 8.46(1 \mathrm{H}, \mathrm{d}, J$ $\left.=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 8.67(1 \mathrm{H}, \mathrm{d}, \quad J=5.2 \mathrm{~Hz}, \mathrm{H}-6$ in pyrimidine $) .{ }^{13} \mathrm{C}$ NMR (100.58 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 108.35 ; 113.62 ; 118.96 ; 120.90 ; 121.70 ; 124.18 ; 128.19 ; 132.50 ; 136.34 ;$ 156.27; 160.52. Found, $m / z(E I): 317.9870[M]^{+} . \mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrF}_{3} \mathrm{~N}_{3}$. Calculated, $m / z 317.9854$.

2-(3-Bromopyridin-2-yl)aminopyrimidine (1b). Yield 52 \%. M.p. $154-156^{\circ} \mathrm{C}$. GC-MS, $251.0\left(\mathrm{M}^{+}, 5\right), 171.1$ (100), 144.1 (7), 79.1 (8). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.85$ $(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-5$ in pyrimidine $) ; 6.88(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ in pyridine $) ; 7.85(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}, \mathrm{H}-4$ in pyridine $) ; 7.92(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) ; 8.43(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-6$ in pyridine $) ; 8.57(2 \mathrm{H}$, $\mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-4$ and $\mathrm{H}-6$ in pyrimidine $).{ }^{13} \mathrm{C}$ NMR $\left(100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 109.71$; 114.60; 119.08; 141.01; 147.21; 149.55; 158.32; 158.92. Found, m / z (EI): 250.9917 [M] ${ }^{+}$. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrN}_{4}$. Calculated, $m / z 250.9932$.
2-(2-Bromophenyl)aminopyrazine (4a). Yield 30 \%. M.p. $77-79^{\circ} \mathrm{C} . \mathrm{GC}-\mathrm{MS}, 250.0\left(\mathrm{M}^{+}\right.$, 10), 170.1 (100), 143.0 (9), 85.0 (11), 68.1 (10). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.94$ $\left(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.95(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) ; 7.32\left(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.58(1 \mathrm{H}, \mathrm{d}, J$ $\left.=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.04$ and $8.15(2 \mathrm{H}$, both d, $J=2.8 \mathrm{~Hz}, \mathrm{H}-5$ and $\mathrm{H}-6$ in pyrazine); $8.27(1 \mathrm{H}$, d, $J=1.2 \mathrm{~Hz}, \mathrm{H}-3$ in pyrazine); $8.50\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 114.23 ; 120.30 ; 123.92 ; 128.24 ; 132.80 ; 134.08 ; 135.76 ; 137.18 ; 141.66$. Found, m / z (EI): $250.0006[\mathrm{M}]^{+} . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN}_{3}$. Calculated, $m / z 249.9980$.

REFERENCES

I. D.S. Ermolat'ev, E.V. Van der Eycken, J. Org. Chem. 73, 6691 (2008).
II. Y. Liu, Y. Bai, J. Zhang, Y. Li, J. Jiao, X. Qi, Eur. J. Org. Chem. 6084 (2007).
III. Y. Heo, D. Hyun, M.R. Kumar, S. Leo, H.M. Jung, S. Lee, Tetrahedron Lett. 53, 6657 (2012).
IV. A.J. Kim, H.J. Lee, J.C. Park, H. Kang, H. Yang, H. Song, K.H. Park, Molecules 14, 5169 (2009).
V. X. Hao, J. Yuan, G.-A. Yu, M.-Q. Qiu, N.-F. She, Y. Sun, C. Zhao, S.-L. Mao, J. Yin, S.-H. Liu, J. Organomet. Chem. 706-707, 99 (2012).
VI. L.B. Delvos, J.-M. Begouin, C. Gosmini, Synlett 2325 (2011).
VII. W.A.W. Stolle, A.T.M. Marcelis, A. Koetsier, H.C. van der Plas, Tetrahedron 45, 6511 (1989).
VIII. K. Liubchak, K. Nazarenko, A. Tolmachev, Tetrahedron, 68, 2993 (2012).

Received on November 25, 2014.

